PITAGORA E I PITAGORICI

Sembra che Pitagora, nato a Samo, sia vissuto tra il 570 e il 500 a.C. Egli avrebbe compiuto grandi viaggi in Oriente: avrebbe poi abbandonato Samo per sottrarsi alla tirannia di Policlete. È certo che si stabilì in Italia, a Crotone, e che ivi fondò una scuola, che sembra avesse carattere religioso, politico, filosofico e scientifico a un tempo. Da Crotone dovette, per una specie di sommossa, passare a Metaponto, dove forse morì.

Secondo la testimonianza di Proclo, da noi già veduta, Pitagora stesso avrebbe compiuto delle scoperte matematiche di capitale importanza, quali quelle degli irrazionali e dei poliedri regolari. Dice infatti Proclo nel suo Riassunto: «Pitagora trasformò questo studio in una forma di insegnamento liberale, investigando dall'alto i suoi principi, e indagando i teoremi astrattamente e intellettualmente: egli scoprì il fatto degli irrazionali e la costruzione delle figure cosmiche». Alla «scuola pitagorica», poi, Proclo stesso nel corso del suo Commento, ed altri, attribuiscono varie altre dottrine nel campo della matematica. Così per esempio:

1) il teorema sulla somma degli angoli del triangolo (eguale a due retti);
2) il celebre teorema detto «di Pitagora» sul triangolo rettangolo (il quadrato costruito sull'ipotenusa è equivalente alla somma dei quadrati costruiti sui cateti);
3) la costruzione dei poligoni regolari;
4) i problemi di «applicazione delle aree» (serie di problemi che traducono geometricamente le equazioni di primo e secondo grado).

Sappiamo che fin dai primordi, con gli inizi della scuola pitagorica, la matematica greca si occupò delle proporzioni. Proporzione è l'uguaglianza di due rapporti. E che cosa deve intendersi, ad esempio, per «rapporto» tra due linee: tra due segmenti di retta, per fissare le idee?

Secondo la concezione «granulare» della linea, basterà contare quanti punti («granellini») entrano a comporre un segmento e quanti entrano a comporre l'altro: il quoziente del primo numero per il secondo ci darà il «rapporto» tra i due segmenti.

Così, se il primo segmento è composto di 500 punti, mentre il secondo è composto di 231 punti, il rapporto tra i due segmenti è espresso dal quoziente della divisione di 500 per 231, ossia dalla frazione 500/231.

Dire quindi che un segmento sia doppio, triplo, ..., di un altro, vuol dire che il numero dei punti componenti il primo segmento è doppio, triplo, del numero dei punti componenti l'altro.

Secondo questo modo di vedere, due segmenti qualunque, essendo formati da punti tutti eguali tra loro, ammettono sempre un elemento costitutivo comune, o (per dire più precisamente) un «sottomultiplo» comune: cioè un terzo segmento che, riportato più volte di seguito, sia contenuto esattamente tanto nell'uno quanto nell'altro. Male che vadano le cose, infatti, un tale sottomultiplo comune sarà sempre il punto.

Un tale stadio della concezione degli enti geometrici dovette necessariamente aversi. Sembra che possa essere collocato ai primordi della scuola pitagorica: ad ogni modo presso i matematici che fiorirono, in Grecia e in Italia, prima del 400 a. C.

Ma una grande scoperta nel campo della matematica fu compiuta prima della data sopra detta: quella dell'«esistenza di grandezze
incommensurabili». A tale scoperta si riferisce Platone, in un passo delle Leggi, l’ultimo dialogo della vecchiaia, deplorando che da lui stesso fu conosciuta tardi, e che ancora veniva ignorata da molti Greci: ignoranza degna più di animali che di uomini. Si comprende l’importanza estrema annessa da Platone alla scoperta delle grandezze incommensurabili, quando si rifletta che essa rappresenta il trionfo più pieno del puro ragionamento sopra i dati dell’esperienza sensibile, e si ponga mente all’indirizzo completamente teorico che Platone riteneva si dovesse dare allo studio della matematica.

La scoperta di cui parliamo fu appunto una delle cause che condusse ad abbandonare l’ingenua concezione del punto dotato di dimensioni, portando all’introduzione degli enti geometrici razionalmente concepiti (punto senza dimensioni, ecc.) come si trova in Euclide.

Vediamo in che consiste questa grande scoperta che da Procolo viene attribuita a Pitagora stesso.

Consideriamo due segmenti di retta e domandiamoci: hanno essi, comunque vengano scelti, un sottomultiplo comune? In altre parole: sono essi composti di un numero «finito» (variabile da linea a linea) di parti di lunghezza «finita» eguali tutte fra loro? Come si è già detto, secondo la primitiva concezione degli enti geometrici, la risposta sarebbe affermativa: infatti il punto (di dimensioni finite) sarebbe in ogni caso il sottomultiplo comune cercato. Ma si trovò che esistono coppie di segmenti che non ammettono nessun sottomultiplo comune: si capisce quindi che un tale fatto risultò inconciliabile con la concezione del punto dotato di dimensioni. La prima coppia, che venne scoperta, di segmenti «incommensurabili» (così dicono due segmenti che non ammettono alcun sottomultiplo comune) è quella costituita dal lato e dalla diagonale di un qualunque quadrato. Vediamo in qual modo ciò è stato dimostrato, seguendo le tracce del ragionamento (ritenuto pitagorico) che si trova abbozzato in Aristotele e in uno scolio del libro X di Euclide.

Si procede col metodo dimostrativo di riduzione all’assurdo: cioè si ammette che quel che si vuol dimostrare non sia vero, e si fa vedere che una tale ammissione conduce a conseguenze contradditorie. Nel caso nostro, si ammette che, se possibile, la diagonale sia commensurabile col lato del quadrato, vale a dire che diagonale e lato ammettano un sottomultiplo comune. La diagonale ad esempio, con-
terrà un certo numero intero \(m \) di volte il sottomultiplo, mentre il lato conterrà lo stesso sottomultiplo un numero intero \(n \) di volte. Anzi prendendo quel sottomultiplo comune (che supponiamo possa esistere) come unità di misura delle lunghezze, possiamo dire che la lunghezza della diagonale verrà espressa dal numero \(m \), quella del lato dal numero \(n \). Per comprendere meglio, pensiamo a due segmenti, che contengano esattamente il metro: quest’ultimo costituisce (in tal caso) un loro sottomultiplo comune e supponiamo che il primo segmento contenga esattamente 5 volte il metro mentre il secondo lo contenga esattamente 3 volte. I numeri 5 e 3 esprimono allora senz’altro le lunghezze (in metri) dei due segmenti.

Applichiamo ora il teorema di Pitagora al triangolo rettangolo isoscele \(ABC \) (fig. 4), che costituisce metà del quadrato \(ABCD \). Il famoso teorema dice: In ogni triangolo rettangolo il quadrato costruito sull’ipotenusa è equivalente alla somma dei quadrati costruiti sui cateti. Abbiamo dunque: \(AB^2 + BC^2 = AC^2 \), intendendo che l’area del quadrato costruito su \(AC \) è eguale alla somma delle aree dei quadrati costruiti sui cateti \(AB, BC \). Tali aree si esprimono moltiplicando per se stessa (cioè elevando a quadrato, ossia alla seconda potenza) la lunghezza del lato di ciascun quadrato. Nel nostro caso la lunghezza dell’ipotenusa \(AC \) (rispetto al supposto sottomultiplo comune preso come unità) è data dal numero \(m \), mentre i due cateti eguali \(AB, BC \) hanno la lunghezza \(n \). L’area del quadrato costruito sull’ipotenusa è dunque espressa dal numero \(m^2 \), quella del quadrato costruito su uno dei cateti è espressa da \(n^2 \). E per il teorema di Pitagora deve essere: \(m^2 = n^2 + n^2 \), cioè \(m^2 = 2n^2 \).

Questa relazione è una conseguenza dell’ammissione fatta in principio: che cioè il lato \(AB \) e la diagonale \(AC \) del quadrato \(ABCD \) abbiano un sottomultiplo comune, sottomultiplo che abbiamo assunto come unità di misura. Ma l’uguaglianza scritta è assurda: è impossibile, infatti, che il quadrato \(m \) di un numero intero \(m \) sia eguale al doppio del quadrato \(n \) di un altro numero intero \(n \). Ciò può vedersi in vari modi: il ragionamento tradizionalmente attribuito ai Pitagorici ricorre alla proprietà dei numeri pari e dispari, ammettendo, tra l’altro, che un numero non possa essere insieme pari e dispari.

Non occorre entrare nei particolari di un tal ragionamento, che può essere anche trasformato e abbreviato ricorrendo alle proprietà della scomposizione in fattori primi. Basterà dire che un numero quadrato risulta dalla ripetizione (per due volte) degli stessi fattori, e che
l'introduzione (per una sola volta) del fattore 2 non permette di formare un quadrato.
Così ad esempio:

\[6^2 = 36 = 4 \times 9 = 2^2 \times 3^2. \]

Moltiplicando per 2, si ha:

\[72 = 2 \times 36 = 2 \times 2^2 \times 3^2 = 2 \times 3^4 \]
dove il fattore 2 risulta ripetuto 3 volte: quindi 72 non può essere un quadrato.
È dunque assurda l'uguaglianza \(m^3 = 2 \cdot n^2 \).
Ma a questa uguaglianza siamo stati condotti come conseguenza della supposizione fatta che il lato e la diagonale del quadrato potessero ammettere un sottomultiplo comune. Ciò è quindi impossibile: lato e diagonale di un quadrato costituiscono una coppia di grandezze incommensurabili.

La dimostrazione della «incommensurabilità» del lato e della diagonale d'un quadrato equivale alla dimostrazione della irrazionalità di \(\sqrt{2} \). Non esiste, cioè, alcun numero razionale \(\frac{p}{q} \) che sia eguale a \(\sqrt{2} \). Se, infatti, fosse:

\[\frac{p}{q} = \sqrt{2} \]

si avrebbe, elevando a quadrato:

\[\frac{p^2}{q^2} = 2 \]
da cui:

\[p^2 = 2q^2. \]

cioè quella stessa uguaglianza assurda vista prima. Il legame sta nel fatto che se indichiamo con 1 la lunghezza del lato d'un quadrato, la lunghezza della diagonale è espressa appunto da \(\sqrt{2} \), come si vede applicando il teorema di Pitagora:

\[AC^2 = AB^2 + BC^2 = 1^2 + 1^2 = 1 + 1 = 2 \]

quindi:

\[AC = \sqrt{2}. \]

Aritmetica geometrica di Pitagora.

Ecco come Pitagora costruiva questi numeri:

\[
\begin{array}{c}
\bullet \\
\bullet \bullet \\
\bullet \bullet \bullet \\
\bullet \bullet \bullet \bullet \\
\end{array}
\]
e così via. Il numero successivo 15, si ottiene dal triangolo 10 disponendo lungo uno qualsiasi dei suoi lati un orlo di altri 5 ciottoli; il successivo 21, disponendo allo stesso modo altri 6 ciottoli; e così di seguito, aggiungendo di volta in volta 8, e poi 9 ciottoli.

I quadrati di un numero sono diagrammi di ciottoli costruiti, secondo schemi ovvii, così:

\[
\begin{array}{c}
\bullet \\
\bullet \bullet \\
\bullet \bullet \bullet \\
\bullet \bullet \bullet \bullet \\
\end{array}
\]

Si vede che il numero 9 è contenuto orlando due lati adiacenti del 4, e il 16 è ottenuto orlando, analogamente, il 9. Il numero successivo 25, si ottiene orlando il 16, e così di seguito. Allo stesso modo, ogni altra figura piana regolare (avente tutti i lati e tutti gli angoli eguali) fornisce l'intelaiatura fondamentale per il diagramma di una classe di così detti numeri poligonalì (pentagonali, esagonali, ettagonalì, ottagonali, ecc.).

Questo legame tra le figure geometriche regolari e le corrispondenti successioni di numeri, era profondamente significativo per i Pitagorici e, dopo di loro, per i discepoli di Platone, sia perché era evidente l'unione tra simmetrie spaziali e numeri sia perché la decade e la tetradre continuavano ad apparire inaspettatamente e sotto forme diverse. Vi erano anche numeri oblunghi, corrispondenti a diagrammi di ciottoli ordinati in rettangoli, con lati che differivano tra loro di un ciottolo; per esempio, \(30 = 5 \times 6\). Quando Pitagora constatò che un numero oblungo è

Fig. 5. - Pentagramma pitagorico o pentagono regolare stellato. Veniva usato come segnale di riconoscimento dai pitagorici e assumeva per essi un significato mistico. Le lettere collocate ai vertici formano la parola \(\varepsilon\psi\kappa\alpha\) (il dittongo \(\varepsilon\) è sostituito da \(\theta\)) che significa in greco "salute".
eguale al doppio di un numero triangolare, come in \(30 = 2 \times 15\), il suo entusiasmo non conobbe limiti.

Incoraggiato dai grandi successi ottenuti con le figure piane, Pitagora si avventurò arditamente nel regno dei solidi. Qui, aiutato dall’immaginazione, calcolò i successivi numeri cubici 1, 8, 27, 64, 125, ... per mezzo di un processo uniforme, che il lettore ingegnoso potrà risoprire. E qui si fermò, poiché lo spazio, per lui come per tutti i numerologi e geometri greci, aveva solo tre dimensioni. I Greci riuscivano a concepire il risultato della moltiplicazione di tre numeri come eguale al volume di una scatola, i cui lati siano 3, 4, 10. Ma una moltiplicazione «quattro linee» non poteva aver senso per chi considerava lo spazio come tridimensionale. Tutte queste barriere artificiali svanirono per nulla quando la geometria fu soppiantata dall’algebra, nuovo linguaggio dei numeri. Ma i numeri triangolari e poligonalì di Pitagora, e anche i cubi, sono sopravvissuti, almeno come nomi, nella teoria moderna dei numeri. Gli oblunghi, invece, sono scomparsi da tempo anche dal nostro lessico.

Importanza grandissima, nella scienza pitagorica, ha il quarto dei numeri triangolari, 1, 3, 6, 10, 15, 21, ... È il 10, la decade. Ma è anche un triangolo, e perciò la sacra tetrattide. Poiché, secondo Pitagora, tutte le cose sono contenute nella decade, possiamo capire perché il 10 fosse il perfetto tra tutti i numeri e, secondo Platone, archetipo dell’universo. (Da E. T. Bell, La magia dei numeri, traduz. G. Forti, Longanesi, 1949).

Dalla riva del razionale a quella dell’irrazionale.

Voi avete visto delle fotografie di lastricati di marmo della Grecia antica: ebbene, una leggenda ci racconta che Pitagora contemplava un giorno uno di questi pavimenti di marmo. Egli sapeva che gli scapolellini avevano sempre avuto molte difficoltà per evitare che le grandi lastre di marmo si spaccassero nel mezzo e che l’architetto aveva dato loro per questo un disegno più comodo da eseguire proprio con dei mezzi quadrati (fig. 7), fatto questo che rendeva il loro compito più facile. Inoltre, il disegno era più grazioso quando le lastre erano sistemate nel pavimento.

Pitagora trovò questo disegno non soltanto grazioso, ma anche molto interessante. «Signori», egli disse ai suoi discepoli indicando un gruppo di lastre del pavimento «avete qui un triangolo con un angolo retto. E il quadrato sul lato più grande che forma questo triangolo contiene quattro lastre triangolari, e i quadrati sugli altri due lati del triangolo ne contengono 2 ciascuno; 2 + 2 lastre formano 4 lastre, noi disponiamo quindi di un altro triangolo nel quale, come per il triangolo babylonese 3, 4, 5, il quadrato costruito sul lato più grande è eguale alla somma dei quadrati costruiti sugli altri due lati.»
Pitagora doveva veramente sentirsì contento di sè; era il trionfo dello spirito scientifico greco: osservazione, ragionamento.

« Molto bene, molto bene, in effetti », replicò qualcuno del gruppo, « ma... ».
Cosa è, cosa non è, qualcuno ha detto « Ma... »: era ben necessario che ci fosse un contradittore per riscaldare la discussione (ciò non è molto cambiato oggi)... « Ma », disse l’incerto, schiarendosi la voce, « con il triangolo babilonese, i due lati diversi dall’ipotenusa... (per darsi più autorità, egli adoperava la parola dotta ipotenusa per il lato grande)... Io dico dunque che il quadrato dell’ipotenusa del triangolo 3, 4, 5 è eguale alla somma dei quadrati degli altri due lati in condizioni molto speciali, uno dei lati deve avere 3 unità e l’altro 4. Ora, nel vostro nuovo esempio, cittadino Pitagora, voi imponete un’altra condizione molto speciale, quella che i due lati piccoli siano eguali. Ma se io faccio un triangolo rettangolo diverso, come potrebbero aiutarci a risolvere il problema i vostri scalpellini? ». E disegnò un triangolo rettangolo qualunque sulla polvere del pavimento.

Dopo ciò, si separarono. Pitagora non aveva molto apprezzato questo critico, ma doveva ben riconoscere che mostrava il vero spirito scientifico greco: due triangoli particolari come il triangolo 3, 4, 5 o quello dei due mezzi quadrati del pavimento non provano niente. Si deve poter scegliere non importa quale esempio e si deve provare una verità scientifica sui triangoli rettangoli utilizzando in generale non importa quale triangolo.

Pitagora si fece questo piccolo ragionamento: nel triangolo 3, 4, 5 (fig. 9), a vale 3, b vale 4, i loro quadrati 9 e 16 che, sommati, danno proprio 25, cioè l'ipotenusa al quadrato, che scriviamo h^2. Nel triangolo dei pavimenti, ci sono 2 lastre nel quadrato del lato a, 2 nel quadrato del lato b e 4 nel quadrato dell'ipotenusa. Molto bene. Ma, nel triangolo che questo discepolo scettico gli aveva presentato, a e b avevano non importa quale lunghezza, e Pitagora si sentiva completamente perduto.

Allora si fece da sé un altro triangolo. Il lato a aveva sempre 3 lunghezze, ma il lato b era così piccolo che lo si poteva appena vedere, il quadrato del lato b era allora praticamente eguale al quadrato su a, e non ci vedeva quasi differenza. Pitagora suppose allora che h^2 fosse proprio poco più grande di a^2 e che questo microscopico pezzetto fosse b^2.

Idea geniale, restava da provarla:

Seguendo le regole che guidano coloro che sono sani di vero spirito scientifico greco, l'ultima cosa che fece Pitagora fu di mettere per iscritto e in ordine tutti i risultati della sua osservazione. Ecco un disegno di ciò che egli doveva esaminare.

Se si riflette, si capisce perché Pitagora era sicuro di trovarsi sulla buona pista, e si immagina perché era scontento, più forse di se stesso che del suo incredulo discepolo, di non arrivare a provare che il quadrato di ogni ipotenusa era eguale alla somma dei quadrati degli altri due lati.

Non capita spesso che voi possiate sedervi ed esaminare tutti gli elementi che un grande inventore aveva davanti a sé qualche giorno o qualche ora prima che la sua scoperta fosse fatta. A che cosa pensava Bell quando inventò il telefono? Che cosa aveva scarabocchiato Morse sul suo quaderno quando inventò il telegrafo? Che c'era nel laboratorio, la notte in cui Edison fece la sua prima lampada elettrica? Ebbene, avete davanti a voi presso a poco tutti i fatti e tutte le incertezze che Pitagora aveva davanti a sé quando fece una delle più grandi scoperte matematiche di tutti i tempi. Voi potreste osservarle per delle ore e per dei giorni, e molti altri potrebbero osservarle senza risultato per dei mesi e anche degli anni. Oltretutto, i Babilonesi e gli Egiziani non avevano forse contemplato il triangolo 3, 4, 5 per 1500 anni senza trovare nulla?

Io ho l'impressione che Pitagora cominciò a vedere in maniera più larga il triangolo del pavimento (fig. 8): probabilmente guardò i piccoli triangoli che formavano la figura. Il quadrato dell'ipotenusa si
trovava formato da 4 mattonelle e ciascun quadrato su i due lati
di 2 mattonelle, ma vi era una linea estremamente interessante che
si notava, quella che partiva dal vertice dell’angolo retto ed era per-
pendicolare all’ipotenusa: essa passava attraverso il quadrato di questa ipote-
nusa e lo divideva in due metà: ciascuna metà poteva essere divisa in 4 parti e
così pure ciascuno dei quadrati costruiti su i piccoli lati: ecco che la cosa diven-
tava interessante!

Pitagora era molto eccitato: egli si
precipitò su tutti gli altri triangoli che
aveva tracciato e vi tracciò punteg-
ghiata, a partire dall’angolo retto, la per-
pendicolare all’ipotenusa. Ciò che ot-
tenne è indicato dalla fig. 8, a lato.
In questo triangolo fatto con delle mat-
tonelle dove i due lati erano eguali, la
punteggiata divideva il quadrato dell’ipo-
tenusa in due parti eguali. In tutti gli
altri, essa lo divideva in due parti ed
egli non impiegò molto tempo a vedere che la grandezza di ciascuna
parte appariva essere la stessa di quella del quadrato che si trovava
al lato (fig. 10).

Pitagora si disse con impazienza: «Se almeno arrivassi a provare
ciò!». Egli disponeva di un buon numero di artifizi trovati nella geo-
metria dei Greci. Questi, dopo tutto, avevano passato un tempo con-
siderevole a lucidare e a mettere a punto gli strumenti rudimentali
degli Egiziani e dei Babilonesi e a realizzarne anche degli altri. Egli
cercò nell’armamentario della geometria lo strumento di cui aveva bi-
sogno per manipolare le aree delle figure a lati paralleli.

Questa geometria diceva che ogni figura avente dei lati paralleli,
quadrato, rettangolo o parallelogramma, aveva un’area eguale al pro-
dotto della sua base per la sua altezza, e che, in più, ogni triangolo
aveva un’area eguale alla metà del prodotto della sua base per la
sua altezza.

Pitagora si imbarcò allora nel caso generale di un triangolo rettan-
golo qualunque di cui i lati a e b avessero non importa quale lunghezza.
Ciò che voleva provare era che

\[a^2 + b^2 = h^2. \]

Dopo aver disegnato la perpendicolare all’ipotenusa a partire dal-
l’angolo retto e dopo averla prolungata per tagliare il quadrato del-
l’ipotenusa, egli ottenne un rettangolo. La metà di quest’area era un
triangolo con la stessa base e la stessa altezza del rettangolo (uno dei
triangoli tratteggiati di fig. 10).
La metà dell’area del quadrato inferiore era anche un triangolo di base b e di altezza pure b.

È qui che interviene l’unico artificio da parte di Pitagora. Egli utilizzò la regola che gli diceva che la metà di un parallelogramma è l’area di un triangolo con la stessa base e la stessa altezza. Egli trasformò il rettangolo superiore e il rettangolo inferiore in due parallelogrammi poi li tagliò in due.

Ed ecco due triangoli molto interessanti. Ogni triangolo aveva h come un lato e b come un altro. Gli angoli di ogni triangolo aventi questi due lati erano gli stessi perché erano formati da un angolo retto più il piccolo angolo opposto al lato a. Ora, si sapeva già che, quando due lati di un triangolo e l’angolo compreso fra essi sono eguali a quelli di un altro triangolo, i due triangoli sono eguali.

Era arrivato! Pitagora possedeva la sua dimostrazione. I due triangoli che erano eguali l’uno all’altro erano delle metà di parallelogrammi. Dunque i parallelogrammi erano essi stessi eguali poiché le loro metà erano eguali, perché quello basso era eguale al quadrato su b, quello in alto al pezzetto di quadrato di h tagliato dalla perpendicolare all’ipotenusa.

Dopo che Pitagora ebbe scoperto questo artificio, egli provò subito nello stesso modo che il quadrato di a era eguale all’area della lunga striscia stretta tagliata dall’altro lato con la perpendicolare all’ipotenusa. Il triangolo avente a per base e h per uno dei suoi lati perché la sua altezza era ancora a, l’angolo fra a e h era costituito da un angolo retto e dall’angolo del triangolo al quale era opposto ah. La metà del lungo parallelogramma era un triangolo contenente pure quest’angolo, l’angolo opposto in b e l’angolo retto. I lati che racchiudevano questo angolo erano a e h. Avendo due lati e l’angolo compreso fra loro eguali, i due triangoli erano eguali, i parallelogrammi erano eguali, rettangolo e quadrato erano eguali; quali eguaglianze!
Ora, quando si aggiungevano le due parti dell’ipotenusa, esse erano eguali alla somma dei quadrati dei lati, in ogni triangolo di qualsiasi tipo.

E Pitagora aveva provato ciò che voleva: il quadrato dell’ipotenusa era eguale alla somma dei quadrati degli altri due lati.

Q. E. D.! = Quod erat demonstrandum! citazione molto conosciuta dai maestri di scuola romani, che si traduce con C. D. D. (come dovevansi dimostrare).

Zenone e i suoi « argumenti » contro il moto.

Achille e la tartaruga. - Il filosofo Zenone (V sec. a.C.), discepolo di Parmenide, propose i suoi celebri argomenti per sostenere le idee del suo maestro, cioè l’Essere immobile. Ricordiamo il più noto di tali argomenti cioè quello di Achille e della tartaruga. Il pie’ veloce Achille non riuscirà mai, afferma Zenone, a raggiungere una tartaruga che egli insegue. Supponiamo infatti che Achille si trovi inizialmente in A (fig. 11), e la tartaruga in T. Naturalmente Achille è più veloce, e quindi, mentre egli coprirà il tratto AT, la tartaruga avrà compiuto un tratto minore, giungendo, ad esempio, in T’. Ma Achille continua la sua corsa, e giunge in T”. Senonché la tartaruga, nello stesso tempo, avrà ancora se pur di pochissimo, progredito, giungendo, ad esempio, in T”’. E così via; sicchè Achille, conclude Zenone, non raggiungerà mai la tartaruga.

Su quest’argomento di Zenone hanno scritto senza fine filosofi e matematici, e noi non pretenderemmo pertanto di voler qui trattare a fondo la questione. Ci limiteremo, in vista dello scopo da raggiungere, a due osservazioni:

1) L’argomento di Zenone si svolge nel campo teorico di una geometria di precisione, e non già nel campo pratico (nel quale evidentemente, non avrebbe senso). Ciò la strada percorsa da Achille e dall’irraggiungibile tartaruga è una retta geometrica sulla quale i punti sono privi di dimensioni. Solo a questo patto l’argomento ha un valore, in quanto si deve ammettere che sulla retta possano essere disegnati segmenti piccoli a piacere (i successivi percorsi): cosa che non sarebbe possibile se la retta avesse struttura granulare, fosse cioè composta di punti aventi lunghezza finita.
Alcuni studiosi hanno appunto veduto sotto questo aspetto il vero valore dell’argomento di Zenone: cioè nella riduzione all’assurdo della tesi della struttura granulare della linea. L’argomento di Zenone costituirebbe cioè, sotto la forma paradossale, un poderoso incentivo alla considerazione del punto senza dimensioni, concezione fondamentale della geometria di tutti i tempi.

2) Effettivamente Achille, per raggiungere la tartaruga, dovrebbe superare infiniti segmenti, dal momento che il procedimento zenoniano non ha mai termine. D’altra parte, è evidente che Achille raggiunge la tartaruga: non c’è argomento, per quanto sottile, che possa infirmare questo semplice dato di fatto. È vero dunque che i segmenti da superare sono infiniti di numero, ma essi vanno diventando sempre più piccoli (tendono a zero) cosicché la loro somma è di lunghezza finita, corrispondente appunto all’effettivo percorso che Achille deve compiere per raggiungere la tartaruga.

Si presenta così per la prima volta nella storia del pensiero matematico un procedimento di carattere infinitesimale, e questo già nella prima metà del V secolo a.C.!

Il procedimento è di natura infinitesimale perché considera una serie di infiniti segmenti che tendono a zero, ossia tendono ad «annichilirsi», ed afferma poi che la somma di tutti gli infiniti segmenti (cioè dei percorsi che, secondo Zenone, Achille compie nell’inseguire
la tartaruga) è di grandezza finita (cioè il percorso che effettivamente Achille ha compiuto nell'atto in cui raggiunge la tartaruga).

Ora supponiamo, tanto per fissare le idee, che la velocità di Achille sia dieci volte più grande di quella della tartaruga. Ciò significa che il percorso di Achille è eguale a 10 volte il percorso compiuto dalla tartaruga nello stesso tempo. Cioè

mentre Achille percorre 1 la tartaruga percorre \(\frac{1}{10} \)

mentre Achille percorre \(\frac{1}{10} \) la tartaruga percorre \(\frac{1}{100} \) (cioè la decima parte di \(\frac{1}{10} \))

mentre Achille percorre \(\frac{1}{100} \) la tartaruga percorre \(\frac{1}{1000} \) (cioè la decima parte di \(\frac{1}{100} \))

e così via senza mai termine.

Dunque la somma di infiniti segmenti che Achille deve superare (oltre il vantaggio 1) per raggiungere la tartaruga è dato da:

\[
\frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \frac{1}{10\,000} \ldots
\]

E con un semplice ragionamento siamo riusciti a trovare che detta somma non è infinita (come tenderebbe ad insinuare l'argomento di Zenone) ma finita, e precisamente eguale a 1/9. (Da A. Frajese, Che cosa è il calcolo infinitesimale, Studium, 1954).

Eudosso e il fenomeno di esaustione.

Nato a Cnido nel 408 a. C., Eudosso compì lunghi viaggi: prima in Egitto, poi a Taranto, ove studiò con Archita che allora dirigeva la scuola pitagorica; infine ad Atene ove ebbe stretti rapporti con Platone. Stabilì la sua scuola a Cizico, donde però mantenne frequenti contatti con i matematici ateniesi.

La sua opera scientifica investe tutti i problemi allora maggiormente discussi: dai tre fondamentali della geometria (duplizzazione del cubo, trisezione dell'angolo, quadratura del cerchio), ai massimi problemi astronomici. In geometria, la sua scuola si distacca da quella platonica per la maggiore importanza che attribuisce alla costruzione delle figure, come unico mezzo di dimostrare la loro esistenza.

Ciò che maggiormente ci interessa dell'opera eudossiana è la sua teoria delle proporzioni e il metodo di esaustione.
La sua teoria delle proporzioni è quella esposta nel libro V degli *Elementi* di Euclide, e costituisce una delle più perfette costruzioni logiche elaborate dal genio greco. Essa introduce geometricamente il calcolo dei numeri reali; e lo introduce in modo così esauriente che soltanto verso il 1870 i matematici hanno sentito il bisogno di integrarla con i mezzi forniti dalla tecnica moderna. Le differenze più notevoli tra la teoria endossiana e le teorie moderne sono due: 1) il fatto che Endosso non attribuisce il nome di numero al rapporto fra grandezze, e non ricorre ad alcun simbolo speciale per indicarlo; 2) il fatto che in Endosso manca un postulato che tenga il posto di quello che oggi chiamiamo postulato della continuità. Questa mancanza costituisce, per Endosso, la sorgente di molte difficoltà: infatti, ogni qual volta egli considera un rapporto, deve ideare qualche speciale costruzione geometrica con cui dimostrare che tale rapporto esiste; non possiede invece alcun metodo generale che gli garantisca l'esistenza di tutti i possibili rapporti.

Non è il caso di esporre qui, nei particolari, gli sviluppi della teoria. Basti osservare che essa prende le mosse non da una definizione astratta di rapporto (o ragione) — questo concetto generale si trova spiegato in modo assai vago nel libro V degli *Elementi* di Euclide — ma dalla definizione precisa e logicamente perfetta di eguaglianza di rapporti: il rapporto fra le due grandezze omogenee A e B è eguale al rapporto fra le due grandezze omogenee C e D, allorquando, presi due interi qualunque m e n, secondo che è:

$$mA \geq nB$$

si ha pure

$$mC \geq nD.$$

Dalla definizione di eguaglianza di rapporti, si passa poi, sempre con lo stesso rigore, alle nozioni di grandezze proporzionali e di proporzione, e infine allo studio analitico delle loro proprietà fondamentali. Questo studio è condotto — come chiunque può constatare — con una meravigliosa generalità; poiché, se è vero che le grandezze prese in considerazione vengono sempre rappresentate con segmenti, è altrettanto vero però che le dimostrazioni operate su di esse possono, senza difficoltà, estendersi a qualunque classe di grandezze omogenee.

Com'è noto, i migliori testi di geometria per licei erano, fino a pochi decenni fa, ricalcati esattamente sulla esposizione di Endosso-Euclide.

I tre principi della teoria endossiana delle proporzioni, in particolare il secondo e il terzo, costituiscono pure il fondamento del celebre *metodo di esaustione* su cui vogliamo ora intrattenerci. Questo metodo, che nelle opere dei grandi geometri greci riuscì a surrogare il nostro calcolo integrale, venne probabilmente ideato da Ippocrate
di Chio, matematico della scuola ateniese di ventun anni più vecchio che Eudosso, o, addirittura, come altri pensano, da Anassagora o da Democrito; ma fu Eudosso il primo che seppe applicarlo con rigore, dimostrando, come ora vedremo, alcuni importantissimi teoremi di geometria.

In che consiste il metodo di esaustione? Non è facile esporlo in via astratta; ma qualche esempio aggiunto alla nostra spiegazione ci permetterà di chiarirlo anche nei suoi punti più difficili.

L'autorcvoile testimonianza di Archimede ci dice che Eudosso, applicando il metodo di esaustione, diede una dimostrazione rigorosa dei tre seguenti teoremi (contenuti nel libro XII degli Elementi di Euclide): 1) due circoli stanno fra loro come i quadrati dei raggi; 2) due piramidi di egual base ed eguale altezza sono fra loro equivalenti – donde si ricava subito l'equivalenza della piramide con la terza parte del prisma di egual base ed eguale altezza –; 3) un cono è la terza parte del cilindro avente base ed altezze eguali a quella del cono. In tale libro (XII degli Elementi) vengono dimostrati con il metodo di esaustione anche altri teoremi; di particolare interesse quello sulle sfere: due sfere stanno fra loro come i cubi dei loro diametri.

Ilustriamo ora con un esempio il metodo di esaustione; può servire, a tale scopo, la dimostrazione sul teorema sui circoli.

Si costruiscono i poligoni regolari iscritti di 4, 8, 16, 32, ..., lati: è facile dimostrare che il primo di essi (cioè il quadrato) è maggiore della metà del cerchio; il secondo è tale, che la differenza fra esso e il quadrato supera la metà della differenza fra il cerchio e il quadrato; lo stesso vale per il terzo e così via. In base al lemma, si conclude che la differenza fra il cerchio e il poligono asimile della serie diventa piccola ad arbitrario col crescere di \(n \).

Infine si giunge alla vera e propria dimostrazione del teorema. Supponiamo che due cerchi \(C_1 \) e \(C_2 \) non stiano fra loro come i quadrati dei rispettivi diametri \(d_1 \) e \(d_2 \). Allora si potrà trovare una quarta proporzionale \(C \), diversa da \(C_2 \), tale che:

\[
C_1 : C = d_1^2 : d_2^2.
\]

(1)

Dimostriamo che ciò è assurdo.

A tale scopo cominciamo a supporre che sia \(C_2 > C \).

Detti \(P_n \) i poligoni regolari iscritti in \(C_2 \); si ha, in base al risultato or ora esposto, che col crescere di \(n \) la differenza \(C_2 - P_n \) diventa piccola ad arbitrio; e cioè diventa:

\[
C_2 - P_n < C_2 - C.
\]

Questa disuguaglianza implica, come è ovvio:

\[
P_n < C.
\]

(2)
Ma noi sappiamo da precedenti teoremi che detti \(Q_n \) i poligoni regolari iscritti in \(C_1 \) aventi il medesimo numero di lati di \(P_n \), deve essere:

\[
Q_n: P_n = d_1^2 : d_2^2.
\]

Confrontando la (3) con la (1) si ottiene:

\[
C_1: C = Q_n: P_n
\]

ossia:

\[
C_1: Q_n = C: P_n
\]

donde si ricava – essendo, per qualunque \(n \), \(C_1 > Q_n \) – che deve essere anche per qualunque \(n \), \(C > P_n \) contro la (2).

Supponiamo dunque che sia \(C_n > C \).

Esisterà, allora, una grandezza \(C' \) tale che:

\[
C': C_2 = d_1^2 : d_2^2.
\]

Confrontando la (4) con la (1) e tenendo conto che si è supposto \(C_2 < C \), se ne ricava \(C_1 > C' \).

Invertendo i termini della (4) si ottiene:

\[
C_2: C' = d_2^2 : d_1^2
\]

la quale proporzione è perfettamente analoga alla (1) e soddisfa ad una condizione \((C_1 > C') \) del tutto analoga a quella \((C_2 > C) \) cui soddisfaceva la (1). Dunque si può ragionare sulla (5) come si fece sulla (1) e ricavarne per la stessa via un assurdo.

Concludendo: tanto l'ipotesi \(C_2 > C \) quanto l'ipotesi \(C_2 < C \) conducono ad un assurdo; ciò è risulta assurdo che i due cerchi \(C_1 \) e \(C_2 \) non stiano fra loro come i quadrati dei rispettivi diametri.

Confrontando il tipo delle dimostrazioni per esclusione con quelle usate dai precedenti geometri greci, il Loria osserva che vi è qui un passaggio del più alto interesse dallo stadio in cui si tentavano ragionamenti implicanti l'idea dell'infinito, allo stadio in cui si riesce a bandire quest'idea con opportuni artifici logici. E conclude: «Quel passaggio è per fermo una delle prove più convincenti dello spirito eminentemente scientifico da cui il popolo greco fu animato fin dai tempi più remoti». (Da L. GEYMÓNAT, *Storia e filosofia dell'analisi infinitesimale*, Torino, 1947).